{-# OPTIONS --postfix-projections --safe --without-K #-} module MAV.Model where open import Level using (suc; _⊔_) open import Algebra using (_DistributesOver_) open import Algebra.Ordered open import Algebra.Ordered.Consequences using (supremum∧residuated⇒distrib) open import Data.Product using (_,_; proj₁; proj₂) open import Relation.Binary using (IsEquivalence; IsPartialOrder) open import Relation.Binary.Lattice using (IsMeetSemilattice; IsJoinSemilattice) record Model c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where field Carrier : Set c _≈_ : Carrier → Carrier → Set ℓ₁ _≲_ : Carrier → Carrier → Set ℓ₂ ¬ : Carrier → Carrier I : Carrier J : Carrier _◁_ : Carrier → Carrier → Carrier _⊗_ : Carrier → Carrier → Carrier _&_ : Carrier → Carrier → Carrier ⊗-◁-isCommutativeDuoidal : IsCommutativeDuoidal _≈_ _≲_ _⊗_ _◁_ I J ⊗-isStarAutonomous : IsStarAutonomous _≈_ _≲_ _⊗_ I ¬ &-isMeet : IsMeetSemilattice _≈_ _≲_ _&_ I-eq-J : I ≈ J ◁-self-dual : ∀ {x y} → (¬ (x ◁ y)) ≈ ((¬ x) ◁ (¬ y)) mix : I ≈ ¬ I open IsCommutativeDuoidal ⊗-◁-isCommutativeDuoidal public using ( isPreorder ; isPartialOrder ; refl ; reflexive ; trans ; antisym ; isEquivalence ; setoid ; module Eq ; ◁-isMagma ; ◁-isSemigroup ; ◁-isMonoid ; ◁-isPromagma ; ◁-isProsemigroup ; ◁-isPromonoid ; ◁-isPomagma ; ◁-isPosemigroup ; ◁-cong ; ◁-congˡ ; ◁-congʳ ; ◁-mono ; ◁-monoˡ ; ◁-monoʳ ; ◁-assoc ; ◁-identity ; ◁-identityˡ ; ◁-identityʳ ; ◁-isPomonoid ; ◁-idem-ε ; ε≲ι ) renaming ( ∙-isMagma to ⊗-isMagma ; ∙-isSemigroup to ⊗-isSemigroup ; ∙-isMonoid to ⊗-isMonoid ; ∙-isPromagma to ⊗-isPromagma ; ∙-isProsemigroup to ⊗-isProsemigroup ; ∙-isPromonoid to ⊗-isPromonoid ; ∙-isPomagma to ⊗-isPomagma ; ∙-isPosemigroup to ⊗-isPosemigroup ; ∙-isPomonoid to ⊗-isPomonoid ; ∙-isCommutativePomonoid to ⊗-isCommutativePomonoid ; isDuoidal to ⊗-◁-isDuoidal ; ∙-◁-entropy to ⊗-◁-entropy ; ∙-idem-ι to ⊗-idem-ι ; ∙-cong to ⊗-cong ; ∙-congˡ to ⊗-congˡ ; ∙-congʳ to ⊗-congʳ ; ∙-mono to ⊗-mono ; ∙-monoˡ to ⊗-monoˡ ; ∙-monoʳ to ⊗-monoʳ ; ∙-assoc to ⊗-assoc ; ∙-identity to ⊗-identity ; ∙-identityˡ to ⊗-identityˡ ; ∙-identityʳ to ⊗-identityʳ ; ∙-comm to ⊗-comm ) open IsStarAutonomous ⊗-isStarAutonomous public using ( ¬-involutive ; ¬-mono ; ¬-cong ; _⅋_ ; ⅋-mono ; ⅋-monoˡ ; ⅋-monoʳ ; ⅋-cong ; ⅋-congˡ ; ⅋-congʳ ; ⅋-assoc ; ⅋-comm ; ⅋-identity ; ⅋-identityˡ ; ⅋-identityʳ ; ⊗-⊸-residuated ; ev ; coev ; linear-distrib ) open IsMeetSemilattice &-isMeet public using ( infimum ) renaming ( x∧y≤x to x&y≲x ; x∧y≤y to x&y≲y ; ∧-greatest to &-greatest ) _⊕_ : Carrier → Carrier → Carrier x ⊕ y = ¬ (¬ x & ¬ y) x≲x⊕y : ∀ x y → x ≲ (x ⊕ y) x≲x⊕y x y = trans (reflexive (Eq.sym (¬-involutive _))) (¬-mono (x&y≲x _ _)) y≲x⊕y : ∀ x y → y ≲ (x ⊕ y) y≲x⊕y x y = trans (reflexive (Eq.sym (¬-involutive _))) (¬-mono (x&y≲y _ _)) ⊕-least : ∀ {x y z} → x ≲ z → y ≲ z → (x ⊕ y) ≲ z ⊕-least x≲z y≲z = trans (¬-mono (&-greatest (¬-mono x≲z) (¬-mono y≲z))) (reflexive (¬-involutive _)) ⊕-isJoinSemilattice : IsJoinSemilattice _≈_ _≲_ _⊕_ ⊕-isJoinSemilattice = record { isPartialOrder = isPartialOrder ; supremum = λ x y → x≲x⊕y x y , y≲x⊕y x y , λ z → ⊕-least } open IsJoinSemilattice ⊕-isJoinSemilattice using ( supremum ) ⊕-mono : ∀ {x₁ y₁ x₂ y₂} → x₁ ≲ x₂ → y₁ ≲ y₂ → (x₁ ⊕ y₁) ≲ (x₂ ⊕ y₂) ⊕-mono x₁≲x₂ y₁≲y₂ = ⊕-least (trans x₁≲x₂ (x≲x⊕y _ _)) (trans y₁≲y₂ (y≲x⊕y _ _)) &-mono : ∀ {x₁ y₁ x₂ y₂} → x₁ ≲ x₂ → y₁ ≲ y₂ → (x₁ & y₁) ≲ (x₂ & y₂) &-mono x₁≲x₂ y₁≲y₂ = &-greatest (trans (x&y≲x _ _) x₁≲x₂) (trans (x&y≲y _ _) y₁≲y₂) ⊕-cong : ∀ {x₁ y₁ x₂ y₂} → x₁ ≈ x₂ → y₁ ≈ y₂ → (x₁ ⊕ y₁) ≈ (x₂ ⊕ y₂) ⊕-cong x₁≈x₂ y₁≈y₂ = antisym (⊕-mono (reflexive x₁≈x₂) (reflexive y₁≈y₂)) (⊕-mono (reflexive (Eq.sym x₁≈x₂)) (reflexive (Eq.sym y₁≈y₂))) &-cong : ∀ {x₁ y₁ x₂ y₂} → x₁ ≈ x₂ → y₁ ≈ y₂ → (x₁ & y₁) ≈ (x₂ & y₂) &-cong x₁≈x₂ y₁≈y₂ = antisym (&-mono (reflexive x₁≈x₂) (reflexive y₁≈y₂)) (&-mono (reflexive (Eq.sym x₁≈x₂)) (reflexive (Eq.sym y₁≈y₂))) sequence : ∀ {w x y z} → ((w ⅋ x) ◁ (y ⅋ z)) ≲ ((w ◁ y) ⅋ (x ◁ z)) sequence = trans (reflexive (Eq.sym (¬-involutive _))) (¬-mono (trans (⊗-mono (reflexive ◁-self-dual) (reflexive ◁-self-dual)) (trans (⊗-◁-entropy _ _ _ _) (trans (◁-mono (reflexive (Eq.sym (¬-involutive _))) (reflexive (Eq.sym (¬-involutive _)))) (reflexive (Eq.sym ◁-self-dual)))))) ⊕-⊗-distrib : _DistributesOver_ _≲_ _⊗_ _⊕_ ⊕-⊗-distrib = supremum∧residuated⇒distrib isPreorder supremum ⊗-⊸-residuated &-⅋-distrib : ∀ {x y z} → ((x ⅋ z) & (y ⅋ z)) ≲ ((x & y) ⅋ z) &-⅋-distrib = trans (reflexive (Eq.sym (¬-involutive _))) (¬-mono (trans (⊗-mono (¬-mono (&-mono (reflexive (¬-involutive _)) (reflexive (¬-involutive _)))) refl) (⊕-⊗-distrib .proj₂ _ _ _)))