{-# OPTIONS --postfix-projections --safe --without-K #-} open import Level using (lift; lower) open import Data.Product using (_,_; proj₁; proj₂) open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (ε; _◅_; _◅◅_) module MAUV.CutElim {a} (Atom : Set a) where open import MAUV.Structure Atom open import MAUV.Base Atom as MAUV import MAUV.Symmetric Atom as SMAUV open import MAUV.Frame open FrameModel MAUV.frame using ( Chu ; module L ; module I ; module C ; embed ) renaming ( model to analyticModel ) open C using (Chu; pos; neg; int; _≤_; fpos; fneg) open import MAUV.Interpretation Atom analyticModel (λ A → embed (`- A)) interactᴾ : (P Q : Structure) → (I.U (I.η Q) L.⊸ I.U I.ι) L.⅋ L.η (P `⊗ Q) L.≤ L.η P interactᴾ P Q .L.*≤* {x} (y , z , x≤y⅋z , ϕ₁ , lift z≤P⊗Q) = lift (x≤y⅋z ◅◅ (`⅋⟩⋆ z≤P⊗Q) ◅◅ (bwd `⅋-comm ◅ ε) ◅◅ (step `switch ◅ ε) ◅◅ (`⊗⟩⋆ ((bwd `⅋-comm ◅ ε) ◅◅ (ϕ₁ {Q} ((I.leaf Q (lift ε)) , ε)) .lower)) ◅◅ fwd `⊗-identityʳ ◅ ε) interact : (P Q : Structure) → (I.η Q I.⊸ I.ι) I.⅋ I.η (P `⊗ Q) I.≤ I.η P interact P Q = I.≤-trans (I.⅋-mono I.counit⁻¹ I.≤-refl) (I.≤-trans (I.α-monoidal .proj₁) (I.α-mono (L.≤-trans (L.⅋-mono I.U⊸ L.≤-refl) (interactᴾ P Q)))) mutual reflect : (P : Structure) → I.η P I.≤ ⟦ P ⟧ .neg reflect `I = I.≤-refl reflect `𝟘 = I.⊤-maximum _ reflect `⊤ = I.η-preserve-⊥ᶜ reflect (`+ A) = I.⊸-residual-to (I.≤-trans I.η-preserve-∙⁻¹ (I.η-mono ((step `axiom) ◅ ε))) reflect (`- A) = I.≤-refl reflect (P `⅋ Q) = I.≤-trans I.η-preserve-∙ (I.⅋-mono (reflect P) (reflect Q)) reflect (P `⊗ Q) = I.∧-greatest (I.⊸-residual-to (I.≤-trans (I.⅋-mono (reify Q) I.≤-refl) (I.≤-trans (interact P Q) (reflect P)))) (I.⊸-residual-to (I.≤-trans (I.⅋-mono (reify P) (I.η-mono (fwd `⊗-comm ◅ ε))) (I.≤-trans (interact Q P) (reflect Q)))) reflect (P `& Q) = I.≤-trans I.η-preserve-∨ (I.∨-least (I.≤-trans (reflect P) I.x≤x∨y) (I.≤-trans (reflect Q) I.y≤x∨y)) reflect (P `⊕ Q) = I.∧-greatest (I.≤-trans (I.η-mono (step `left ◅ ε)) (reflect P)) (I.≤-trans (I.η-mono (step `right ◅ ε)) (reflect Q)) reflect (P `◁ Q) = I.≤-trans I.η-preserve-◁ (I.◁-mono (reflect P) (reflect Q)) reify : (P : Structure) → ⟦ P ⟧ .pos I.≤ I.α (L.η P) I.⊸ I.ι reify P = I.⊸-residual-to (I.≤-trans (I.⅋-comm _ _ .proj₁) (I.≤-trans (I.⅋-mono I.≤-refl (reflect P)) (I.≤-trans (⟦ P ⟧ .int) I.ε≤ι))) reify' : (P : Structure) → ⟦ P ⟧ .pos I.≤ I.α (L.η P) I.⊸ I.ε reify' P = I.⊸-residual-to (I.≤-trans (I.⅋-comm _ _ .proj₁) (I.≤-trans (I.⅋-mono I.≤-refl (reflect P)) (⟦ P ⟧ .int))) main-lemma : (P : Structure) → ⟦ P ⟧ ≤ C.¬ (embed P) main-lemma P .fpos = reify' P main-lemma P .fneg = reflect P sem-cut-elim : (P : Structure) → C.ε ≤ ⟦ P ⟧ → P ⟶⋆ `I sem-cut-elim P I≤P = q .I.*≤* (I.leaf P (lift ε) , ε) .lower where p : C.ε ≤ C.¬ (embed P) p = C.≤-trans I≤P (main-lemma P) q : I.η P I.≤ I.ι q = I.≤-trans (p .fneg) I.ε≤ι cut-elim : (P : Structure) → (P SMAUV.⟶⋆ `I) → P ⟶⋆ `I cut-elim P prf = sem-cut-elim P ⟦ prf ⟧steps